Echolocation of static and moving objects in two-dimensional space using bat-like frequency-modulation sound

نویسنده

  • Ikuo Matsuo
چکیده

Bats use frequency-modulated echolocation to identify and capture moving objects in real three-dimensional space. The big brown bat, Eptesicus fuscus, emits linear period modulation sound, and is capable of locating static objects with a range accuracy of less than 1 μs. A previously introduced model can estimate ranges of multiple, static objects using linear frequency modulation (LFM) sound and Gaussian chirplets with a carrier frequency compatible with bat emission sweep rates. The delay time for a single object was estimated with an accuracy of about 1.3 μs by measuring the echo at a low signal-to-noise ratio. This model could estimate the location of each moving object in two-dimensional space. In this study, the linear period modulation sounds, mimicking the emitting pulse of big brown bats, were introduced as the emitted signals. Echoes were measured from moving objects at two receiving points by intermittently emitting these sounds. It was clarified that this model could localize moving objects in two-dimensional space by accurately estimating the object ranges.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-variant spectral peak and notch detection in echolocation-call sequences in bats.

Bats are able to recognize and discriminate three-dimensional objects in complete darkness by analyzing the echoes of their ultrasonic emissions. Bats typically ensonify objects from different aspects to gain an internal representation of the three-dimensional object shape. Previous work suggests that, as a result, bats rely on the echo-acoustic analysis of spectral peaks and notches. Dependent...

متن کامل

Medial superior olive of the big brown bat: neuronal responses to pure tones, amplitude modulations, and pulse trains.

The structure and function of the medial superior olive (MSO) is highly variable among mammals. In species with large heads and low-frequency hearing, MSO is adapted for processing interaural time differences. In some species with small heads and high-frequency hearing, the MSO is greatly reduced in size; in others, including those echolocating bats that have been examined, the MSO is large. Mo...

متن کامل

Single cortical neurons serve both echolocation and passive sound localization.

The pallid bat uses passive listening at low frequencies to detect and locate terrestrial prey and reserves its high-frequency echolocation for general orientation. While hunting, this bat must attend to both streams of information. These streams are processed through two parallel, functionally specialized pathways that are segregated at the level of the inferior colliculus. This report describ...

متن کامل

Plant Classification from Bat-Like Echolocation Signals

Classification of plants according to their echoes is an elementary component of bat behavior that plays an important role in spatial orientation and food acquisition. Vegetation echoes are, however, highly complex stochastic signals: from an acoustical point of view, a plant can be thought of as a three-dimensional array of leaves reflecting the emitted bat call. The received echo is therefore...

متن کامل

Neural mechanisms of sound localization in an echolocating bat.

The mustache bat emits a three-harmonic echolocation pulse. At the external ear, large interaural intensity differences are generated only when a sound originates within a limited area of two-dimensional space, and this area is different for each pulse harmonic. As a consequence, the external ear generates pronounced binaural spectral cues containing two-dimensional spatial information. This in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013